
Dual Arm Robot Research Report 

Analytical Inverse Kinematics Solution for Modularized Dual-Arm 

Robot With offset at shoulder and wrist 

Motivation and Abstract 

Generally, an industrial manipulator such as PUMA560 is equipped with 6 degrees of freedom(DoF), it is 

just enough to reach a position and orientation in 3-D space. However, to achieve dexterous movement like 

the upper limb of human, different with normal industrial manipulators, such manipulators equipped with 

7-DoF kinematic structure is desirable. With the redundant joint, such manipulators may accomplish tasks 

such as obstacle-avoidance and singularity avoidance while reaching target position at the same time. These 

tasks are all about manipulator kinematics. However, when one wants to utilize advantages of redundant 

manipulators, one encounters problem of solving inverse kinematic problem of such manipulators. There is 

two ways to solve manipulator kinematic problem, one is numerical method and the other is analytical method. 

Traditionally, it used numerical method to deal with kinematics problem is a traditional way. However, solving 

Jacobian matrix is rather tedious, not to mention solving its inverse. Also, the relation between joint space and 

Cartesian space of an arm is not linear, obtaining joint values by numerical method is not satisfactory. 

Since that, we develop an analytical inverse kinematic solution for modularized 7-DoF redundant 

manipulators with offsets at shoulder and wrist and derive analytical inverse kinematic solutions based on 

different joints as redundnt for it. The manipulator shown in Figure 1 is one of the dual arm robot developed 

by our laboratory, which is a modularized 7-DoF manipulator with offsets at shoulder and wrist. 

            

Fig. 1 The physical hardware assembly of the modularized 7-DoF 

manipulator with offsets at shoulder and wrist 

Fig. 2 The modularized component 



 

 

Figure  3: The conceptual structure of the arm Figure  4: The coordinate system of the arm with 

offset at shoulder and wrist. The end-effector is not 

included in this figure 

Main Technology 

1. Modularized component 

Parts of the proposed arm where motors, controller, reduction gear, and others installed are 

modularized component, as shown in Figure 2. In addition, links can be attached to this part at Link 

A-side and Link B-side of this modularized component. Also, there is a window for direct access to 

each controller during maintenance. Generally, the modularized design grants it advantages in easy 

assembly.  

2. Analytical inverse kinematic equation  

As shown in Figure 3, since there are offsets in shoulder and wrist, we cannot apply 

fixed-arm-angle method. Hence, we have to use fixed-joint method. Firstly, we make derivation with 

joint 1 value regarded as redundancy parameter. Then, solution with value of joint 2 seen as 

redundancy parameter will be solved afterwards. 

In the following sections, we denote       
  as a value A of a referred to frame b, while a 

specified value c is d. Also, as shown in Figure 3 and Figure 4, the origin of frame 0 and 1 are at    , 

but they have different orientation. The origin of frame 2 is at    , while the origin of frame 3 is at 

   . The origin of frame 4 and 5 are at           with different orientation. Lastly, the origin of 

frame 6 and 7 are at     and       respectively. 

 
 

Table 1. DH parameters Figure 5: The projection triangle used to solve    

 



  
Figure  6: The triangle spanned by          ,   ,and 

          

Figure  7: The trajectory of virtual offset-wrist forms a 

circle when all joints are fixed except joint 1 

 

A. CLOSED-FORM KINEMATIC EQUATIONS WITH JOINT 1 AS REDUNDANT JOINT 
With the knowledge of   

  and   
 , we obtain wrist position,   

 : 

 

where   
  is the vector from end-effector position to the wrist position. Next, because    is known, we are able to solve 

the position of the shoulder,   
 : 

 

then also with the knowledge of   , we can transform both   
  and   

  into   
  and   

 :   
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Next, find        

 , i.e. project   
  to      . As Figure 5 shows, then we can find    with the aid of projection 

triangle 1 and 2: 
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where   is an angle of triangle 1.     indicates the distance from   
  to        

 . So far we obtain    and   , now 

we can solve    and    by the following equation: 
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where       is the value in     row,     column of matrix  . In this step, since we already know   ,   ,    , and   ,  



 

Figure  8: Projection of the redundancy circle on plane      

 

we know            and          :  
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 Toffset dP 32 00=           (12) 

 Next, with the help of projection triangle on the plane       ., which is spanned by          ,   , and          , , 

we can find    and   :  
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 where          
   is    and   

  is    as in Table 1,          
   can be obtained by simple Euclidean norm 

calculation. 

Now only    remains unknown. It can be found with the information of all the other joint value and 
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 Finally, we find all the joint value by the aforementioned equations using fixed-joint method in joint 1 is 

regarded as redundant parameter. 



B. CLOSED-FORM KINEMATIC EQUATIONS WITH JOINT 1 AS REDUNDANT JOINT 
Since joint 1 and joint 2 can exchange with each other in assembly, that indicates that joint 1 and joint 2 

have similar influence on end-effector position and orientation. Thus, to make the analytical equation for this 

type of arm more complete, we also find equations when joint 2 value is redundancy parameter. When we 

know joint 1 value,            can be easily found, then we can find joint 2 value as (6) and(7) did. However, 

with the circle drawn by trajectory of    when all the joints are fixed except for joint 1, we are able to find  

   based on known    , then applying from (8) to (17) so as to find all values of all other joints.  

As shown in Figure 7,    is on the circle whose center is   . Based on our coordinate system construction 

shown in Figure 4, we consider the offset from     to            between frame 2 and 3. However, we can 

define a virtual point             where            
  is the same as   

        , and     . After defining virtual 

offset-wrist           , we can find the distance between    and   ,   
  :  
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 where        
  is the radius of the circle and   

         
 is the distance from virtual offset-wrist to base. Next,  

 

we are able to find value of joint 1 with the projection shown in Figure 8:  
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      and       can be represented by a quadratic from equation where    
  

 
 is the parameter. 

then by rearranging (20) into a quadratic equation, such that we can find two solutions of   . We then check 

both of the candidates by equations from (4) to (7) to find out which one is correct. 

 

Figure 9. Extreme posture of manipulator for the acceptable joint value. In (a),    is redundant and in (b), 

   is redundant, where the tip position and orientation are specified by (23) and (24). 

 



Experiment Result 

 To verify the correctness of the proposed equations, simulations are implemented as follows. The 

verification is implemented by applying the kinematic equations on the custom-made manipulator with offsets 

at shoulder and wrist. The arm can be seen at Figure 1. In addition, the coordinate construction is the same as 

shown in Figure 4. Though all the joints can rotate      freely in most of the time, after concerning the 

environment, we should assume that there are limitations for every joints. The limitations are shown in Table I. 

Assume the desired position of the end-effector is:  

 Td
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we check both sets of equations where    is treated as redundancy parameter and    is treated as 

redundancy parameter. In figure 9(a), while    is maximum, the joint value set is as the following: 

                                                                     

In contrast, while    is minimum, the joint value set is as the following: 

                                                                      

As shown in figure 9(b), while    is maximum, the joint value set is as the following: 

                                                                     

n contrast, while    is minimum, the joint value set is as the following: 

                                                                      

We can check the joint value solved by proposed analytical inverse kinematics equations by performing 

forward kinematic, then we confirm that the proposed equations are correct. 

Future application 



By deriving analytical inverse kinematics solution for the modularized 7-DoF redundant 

manipulator, we may solve the kinematics faster and more precisely. Also, with the newly-designed 

modularized component for all joint part where motors installed, we may assemble the arm in a 

simpler way.  


